A.1 Chemical-gene relationships

Here we describe the major clusters in Figure 2 of the main paper (reproduced below). We use "C" to represent a chemical, and "G" to represent a gene.

The first major cluster, cluster 3, refers to inhibition (the chemical, C, is an inhibitor of the protein, G). This is reported mostly in a static context in patterns such as “C, a G inhibitor” and “G inhibition by C”. The mechanism behind the inhibition is usually unclear from these descriptions. Is C inhibiting the activity of the protein G or the expression of G’s mRNA? It’s difficult to tell.

Clusters 5 and 6 specifically describe effects on protein activity with 6, the larger cluster, referring mainly to situations where C is an agonist or antagonist of G. Antagonists are often referred to as “blockers” or “inhibitors”, while agonists are referred to as “activators” or “ligands”.

Clusters 8, 9, 10 and 11a all describe effects on mRNA and protein levels, rather than protein activity. Cluster 10 specifically refers to inhibition, while the effects in clusters 8 and 9 are mixed: some positive, some negative, some neutral. Cluster 11a sometimes refers to a treatment response, as though C is administered as a therapy or the paper is investigating G’s response to C.

The dependency paths in clusters 14-16 all describe the binding of C to a protein, G, which is usually a receptor for C. In the associated sentences, C is often an endogenous compound, such as an amino acid or hormone.

Clusters 11c and 19-21 contain relationships of reverse directionality from the rest of the dendrogram. The relationships we have described
so far relate to situations where the chemical, C, acts on the protein, G, perhaps by inhibiting it, inducing its activity, or raising/lowering its expression/synthesis. Instead, clusters 11c and 19-21 describe situations where the protein acts on the chemical: enzymes that modify chemical structures, transporters that shuttle chemicals across cell membranes, and a variety of other pharmacokinetic (PK) relationships.

Cluster 11c contains most of the PK relationships, including effects of G on C’s metabolism and situations where C is actually a metabolite produced by G after acting on some other chemical. Some transport relationships are also found here, though most of these are in clusters 19 and 21.

Cluster 20 refers to enzymatic modification of C by G. Usually G is an enzyme that specifically targets C and contains C’s name within its own name.

While cluster 11c contained some fine-grained local structure – dependency paths specifically referring to metabolism or secretion tended to cluster close together, for example – it was surprisingly difficult to distinguish different classes of PK relationships within this cluster.

We did not assign themes to the last major group of clusters in the dendrogram (clusters 23-30) because these reflected a major class of errors where part of a protein, such as an amino acid or specific binding domain like a zinc finger, was misidentified as a chemical. While amino acids and elements like zinc are chemicals, the relationships reflected here are whole-part, not interactions between distinct entities.
Table A1: Cluster descriptions for chemical (C) – gene (G) interactions, following the cluster numbers illustrated in Figure 2 in the main text.

<table>
<thead>
<tr>
<th>Cluster Number</th>
<th>Cluster Size</th>
<th>Theme</th>
<th>Selected Descriptive Patterns</th>
<th>Entity Pair with Pattern (C / G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>36</td>
<td>inhibition</td>
<td>“C, a G inhibitor”</td>
<td>ARRY-614 / p38</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“G specific inhibitor, C”</td>
<td>naringenin / Smad3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“C, an inhibitor of G”</td>
<td>PSC_833 / P-glycoprotein</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“G inhibition by C”</td>
<td>NVP-AUY922 / Hsp90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“effects of the G inhibitor, C, on…”</td>
<td>SCH_34826 / enkephalinase</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>effect on protein activity</td>
<td>“[chemical]-dependent effects of C on G activity”</td>
<td>fenfluramine / renin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“effect of C on G activity”</td>
<td>donepezil / acetylcholinesterase</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“inhibition of G activity by C”</td>
<td>plumbagin / Nox-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“study on interaction of C with G”</td>
<td>caffeine / myoglobin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“G activity in patients on C”</td>
<td>tacrolimus / CYP3A4</td>
</tr>
<tr>
<td>6</td>
<td>29</td>
<td>agonism / antagonism</td>
<td>“effect of C, a selective G antagonist”</td>
<td>MTEP / mGluR5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“C, a G agonist”</td>
<td>roxindole / 5-HT1A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“inactivation of G by C”</td>
<td>mitomycin_C / DT-diaphorase</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“G agonist, C, …”</td>
<td>cigitazone / PPAR-gamma</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“study of a G antagonist, C, …”</td>
<td>CI-988 / CCK-B_receptor</td>
</tr>
<tr>
<td>8</td>
<td>42</td>
<td>secretion, production, synthesis</td>
<td>“effect of G on C metabolism”</td>
<td>dopamine / cholecystokinin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“C inhibits G secretion”</td>
<td>Dasatinib / TNF-alpha</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“effects of G on C metabolism”</td>
<td>steroid / angiotensin_ii</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“G stimulates C production”</td>
<td>prostaglandin_E2 / interleukin-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“upregulation of C synthesis by G”</td>
<td>prostaglandin_E2 / interleukin-1beta</td>
</tr>
<tr>
<td>9</td>
<td>76</td>
<td>affects expression</td>
<td>“C inhibits G expression”</td>
<td>AG490 / NFATc1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“effect of C on G production”</td>
<td>neopterin / erythropoietin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“C induces the expression of G”</td>
<td>Nicotine / C-reactive_protein</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“C upregulates G expression”</td>
<td>Dexamethasone / Kv1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“effects of C on the expression of G”</td>
<td>letrozole / HOXA10</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>inhibition of activity / expression</td>
<td>“the new G inhibitors, C and…”</td>
<td>rofecoxib / COX-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“the effect of G inhibition by C”</td>
<td>tolcapone / COMT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“inactivation of G by C”</td>
<td>carbodiimides / thrombin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“C effects on G: …”</td>
<td>Naloxone / beta-endorphin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“the effect of C on G activity in…”</td>
<td>aspartame / acetycholinesterase</td>
</tr>
<tr>
<td>11a</td>
<td>62</td>
<td>response to treatment</td>
<td>“G responses to C”</td>
<td>cimetidine / Prolactin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“effect of C on G”</td>
<td>gossypol / LDH-X</td>
</tr>
</tbody>
</table>
| 11c | 96 | metabolism, secretion/uptake | “effect of G on C metabolism”
“effects of G on C formation”
“effect of G on the secretion of C”
“control of G by C”
“G stimulates C uptake”
“[chemical] may reduce G concentration via C”
“G stimulates C transport”
“effect of C on G release” | ribavirin / interferon_alpha_2b
clotfibrate / insulin
amines / renin
dopamine / beta-endorphin
cyclic_AMP / adrenomedullin
omeprazole / intrinsic_factor
retinoic_acid / c-jun
phenylalanine / Insulin
catecholamines / leptin
calcium / Prolactin
fenfluramine / growth_hormone |
| 11d | 23 | binding (uptake/release) | “C release from G”
“binding of C to G”
“C uptake by G”
“enhancement of action of G by C”
“controlled release of G by C” | iron / transferrin
calcium / troponin_C
potassium / HKT1
glucose / insulin-like_growth_factor_1
polyurethane / IGF-1 |
| 13 | 18 | modulation of expression, substrates | “C modulates [event] through G”
“C binding to G”
“C induced by G”
“C is a G substrate”
“C mediates [event] by G” | Metformin / SIRT1
cyanide / myeloperoxidase
nitric_oxide / iNOS
caffeine / cytochrome_p450_1a2
superoxide / c-Src |
| 14 | 24 | receptor binding | “antagonist of the G C receptor”
“effect of C receptors, G and...”
“[chemical] antagonism of a G C agonist”
“interaction of G with C receptors...”
“a new selective G agonist, C...” | tachykinin / NK1
steroid / pS2
dopamine / D-2
estrogen / DYX1C1
procaterol / beta_2-adrenoceptor |
| 15 | 14 | receptors | “G, a C receptor...”
“deletion of the C G gene...”
“G, a major C receptor...”
“the C domain of G”
“analysis of G C channels...” | free_fatty_acid / GPR40
adenosine / A1_receptor
somatostatin / SSTR4
zinc / SIP1
potassium / KCNQ2 |
| 16 | 16 | receptor [subunit] | “the C carrier subunit (G) of...”
“increased expression of C receptor (G)”
“the G subunit of the C receptor”
“human C receptor subunit (G)”
“C receptor G subunits” | acyl / NDUFAB1
benzodiazepine / PBR
NMDA / GluN2B
acetylcholine / CHRNA4
AMPA / GluR1 |
| 19 | 38 | channels / transporters | “regulation of G transporters C and...”
“G is a C channel that modulates...” | sterol / ABCG5
chloride / MOD-1 |
| 20 | 15 | synthase, dehydrogenase, reductase | "neuronal C synthase (G)"
"C transporter (G) polymorphism"
"porcine C reductase (G)"
"C dehydrogenase (G)"
"C synthase (G) gene" | glucose / GLUT4
glutamate / VGLUT1
potassium / Kv4
nitric oxide / nNOS
serotonin / 5-HTT
thiol / GILT
Aldehyde / Ald4p
5-aminolevulinate / ALAS1 |
| 21 | 10 | transporters | "G, a C transporter, ..."
"low-affinity C cotransporter (G)"
"a C binding protein, G"
"C transfer protein (G) polymorphism"
"C binding protein (G)" | ribavirin / ENT1
sodium glucose / SGLT2
methyl_CpG / Mecp2
Cholesteryl_estер / CETP
fatty_acid / hFABP |
| 24 | 24 | sequence, factor, moiety | "complete C sequence of G"
"G is C exchange factor"
"binding of [chemical] to the C moiety of G"
"structural analysis of the C finger of G"
"C binding domains of G" | amino_acid / GSTM4
guanine_nucleotide / Rab3GEP
heme / cytochrome_P-450
zinc / THAP1
nucleotide / CFTR |
| 27 | 74 | phosphorylation / kinases | "expression of receptor C kinase, G"
"G receptor C kinases"
"[gene name] (G) C phosphorylation"
"C phosphorylation pathway"
"implication of G and C kinase in..." | tyrosine / Trk
tyrosine / ErB
tyrosine / GIT1
serine / STAT3
creatine / esterase_D |
| 29 | 13 | phosphorylation / phosphatases | "G induces C phosphorylation"
"G C phosphatase"
"C phosphorylation sites on G"
"conserved C residues in G"
"a critical C residue in G" | tyrosine / Oncostatin_M
tyrosine / Shp2
Serine / IRS2
histidine / lipoxygenase
lysine / apolipoprotein_B-100 |
| 30 | 20 | inhibition / activation (via phosphorylation?) | "[other chemical] inhibits C activation of G"
"efficacy of G C kinase inhibitors"
"surface of G C domain"
"discovery of C G inhibitors"
"G induces rapid C phosphorylation" | phenylephrine / phospholipase_A
tyrosine / EGFR
zinc / TFIIIB
glycine_hydraziđe / CFTR
tyrosine / Prolactin |
A.2 Chemical-disease relationships

Here we describe the major clusters in Figure 3 of the main paper (reproduced below). We use "C" to represent a chemical, and "D" to represent a disease.

By far the largest set of chemical-disease relationships (from clusters 8g, 8h and 9) are treatment relationships, in which a chemical, C, is described as a treatment or potential treatment for a disease, D. Similar to cluster 3 from Figure 2, these relationships are mostly described in a static context: we don’t know why C is a useful treatment for D, but it is described as such without further elaboration.

While we did not choose to separate clusters 8g, 8h and 9 into different themes, there are subtle differences among these three clusters. Cluster 8g mostly describes evaluation of efficacy; C is investigated as an experimental treatment for D, or patients are described as receiving C for D without indication of whether C is useful. Dependency paths in cluster 8h tend to go further, indicating that the treatment was efficacious for D. Finally, cluster 9, a small cluster with only 14 dependency paths, includes statements about using C to prevent or reduce D, which is slightly different than treating D. However, due to the substantial similarities among these three clusters (some variant of the phrase “treatment for” appears in all three), we labeled all of them with the same theme.

Cluster 6, which also involves the word “treat”, refers mainly to the evaluation of side effects in C-treated patients. Despite its proximity to clusters 8 and 9 in the dendrogram, it is semantically more related to clusters 15 and 16, which describe side effects. In these clusters, D is not a disease that C is used to treat, but a side effect or adverse event resulting from treatment with C.
Cluster 20, which is close in meaning to clusters 15 and 16, includes statements implicating C in the pathogenesis of D. Here C is most often an endogenous compound. Whereas in clusters 15 and 16 we tend to see situations where a drug is intentionally administered to a patient or animal, causing an adverse event, cluster 20 refers to cases where levels of C (most often in serum or tissue) are associated with the risk or progression of D. These levels may result from external supplementation or overproduction of an endogenous compound by the body.

Related to cluster 20 are clusters 18 and 19, which describe biomarkers. In these situations, C is not implicated in the pathogenesis of D, but is instead referred to as an indicator, or marker, of disease progression. There is considerable overlap with the patterns used in cluster 20, but again the shift in meaning is subtle - a substance can be an indicator of D without causing D.

Finally, several clusters relate closely to the concept of disease treatment, but rather than stating “C is a treatment for D”, they instead describe observations about what C is doing. Clusters 1, 9, 21, 24, and 28 all refer to situations where C prevents D, or reduces the risk of D (note that cluster 9 appears both in the “prevents” theme, Pr, and in the “treatment/therapy” theme, T, in Table 2 in the main text). In contrast, clusters 26 and 30 refer to cases where C alleviates D, or reduces its effect. The implication here is that C is being used after D has already occurred.
Table A2: Cluster descriptions for chemical (C) – disease (D) interactions, following the cluster numbers illustrated in Figure 3 in the main text.

<table>
<thead>
<tr>
<th>Cluster Number</th>
<th>Cluster Size</th>
<th>Theme</th>
<th>Selected Descriptive Patterns</th>
<th>Entity Pair with Pattern (C / D)</th>
</tr>
</thead>
</table>
| 1 | 13 | prevents, reduces incidence | “C and [other drug] reduce [adverse event] after D”
“C decreased levels of [substance] after D”
“D of patients treated with C”
“[women, men] receiving C to prevent D”
“intravenous C reduces the incidence of D” | Isoflurane / cerebral_ischemia
estrone / brain_injury
triptans / coronary_spasm
nevirapine / HIV-1_vertical_transmission
magnesium / arrhythmias |
| 2 | 20 | inhibits growth / proliferation | “C significantly inhibited the growth of D”
“C inhibits proliferation of D cells”
“C inhibited [event(s)] in D cells”
“C inhibited D growth”
“C inhibits D growth in vitro” | celastrol / osteosarcoma
Darbepoetin / hepatic_cancer
NVP / RCC
sorafenib / tumor
Zebularine / acute_myeloid_leukemia |
| 3 | 46 | induction of effects in cells, esp. resistance; chemotherapy | “[event] induced by C in D cells”
“C therapy for D”
“C resistance in D”
“D resistant to both C and [other drug]”
“chemotherapy agents like C in D treatment” | fenretinide / neuroblastoma
cisplatin / thoracic_malignancies
Tamoxifen / breast_cancer
imatinib / GIST
doxorubicin / hepatocellular_carcinoma |
| 6 | 15 | treatment evaluations (esp. safety) | “C was measured in patients with D”
“we evaluated the effects of C on D”
“C is indicated for D”
“C administered before/after D reduced [event]”
“treatment of D with C” | Glutamic_acid / ischemic_stroke
diphenidol / chronic_constriction_injury
Bicillin_C-R / streptococcal_infections
nicardipine / coronary_artery_occlusion
sulfasalazine / juvenile_spondyloarthropathies |
| 8g | 125 | treatment of disease (esp. evaluation of efficacy) | “C therapy for the treatment of D”
“patients who received C for treatment of D”
“D patients were treated with C”
“effectiveness of C in D”
“comparison of C and [other drug] in D” | indomethacin / PDA
tigecycline / Acinetobacter_infections
DMSO / amyloid_A_amyloidosis
warfarin / atrial_fibrillation
timolol / angle-closure_glaucoma |
| 8h | 80 | treatment of disease (indication of efficacy) | “C may be useful for the treatment of D”
“evaluate the protective efficacy of C in D”
“C is a promising treatment option for patients with D”
“C is approved for the treatment of D”
“C is commonly prescribed for D” | OPC-18790 / congestive_heart_failure
FTY720 / cerebral_ischemia
bosutinib / CML
anidulafungin / intra-abdominal_abscesses
Colchicine / gout |
| 9 | 14 | treatment of disease | “C may be used for the prevention of D”
“in [children, patients] with D following C treatment” | melatonin / premature_aging
MPH / ADHD |
<table>
<thead>
<tr>
<th>Page</th>
<th>Quantity</th>
<th>Type</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>37</td>
<td>side effects (association)</td>
<td>“D associated with C therapy”
“the use of C has been associated with D”
“C intake was associated with D”
“D occurred after C”</td>
<td>clozapine / tachycardia
moxalactam / thrombocytopenia
caffeine / shorter_nocturnal_sleep_duration
oxaliplatin / hypersensitivity_reaction
alfentanil / hypotension</td>
</tr>
<tr>
<td>16</td>
<td>67</td>
<td>side effects (causal implications) / studies inducing effect</td>
<td>“administration of C resulted in D”
“C induces D”
“D was induced by administration of C”
“D was/were induced by infusion of C”
“patient developed D after receiving C”</td>
<td>vincristine / thrombocytopenia
Taxol / myalgias
lidocaine / Hypotension
ouabain / Cardiac_arrhythmias
ceftaroline / eosinophilic_pneumonia</td>
</tr>
<tr>
<td>18</td>
<td>12</td>
<td>potential biomarkers</td>
<td>“C levels of D patients were significantly [lower/higher]…”
“monitoring of C in D rats”
“reduced C in D subjects”
“significant elevations of C in D subjects”
“effect of C on [biomarker level / event] in D patients”</td>
<td>homocysteine / hyperthyroid
homocysteine / hypertensive
selenium / asthmatic
leucine / MSUD
clozapine / schizophrenic</td>
</tr>
<tr>
<td>19</td>
<td>15</td>
<td>potential biomarkers</td>
<td>“effect of C supplementation in D”
“we studied the effect of C on D”
“C was well tolerated in [patient group] with D”
“blood C concentrations in patients with D”
“examine the C status of our D patients”</td>
<td>vitamin_D3 / Autism_Spectrum_Disorder
rosiglitazone / angiogenesis
tolterodine / incontinence
vitamin_C / diabetes_mellitus
magnesium / chronic_ambulatory_peritoneal_dialysis</td>
</tr>
<tr>
<td>20</td>
<td>63</td>
<td>levels associated with disease risk / progression</td>
<td>“high C levels are associated with increased risk of D”
“C implicated in D”
“effect of D on serum C levels”
“patients with D and increased C concentrations”
“C has been implicated in the pathogenesis of D”
“C intake may be associated with [lower/higher] risk of D”
“C supplementation and incidence of D: …”</td>
<td>cholesterol / coronary_heart_disease
bisphosphonates / osteonecrosis
testosterone / prostate_cancer
triglyceride / unstable_angina
Serotonin / migraine
PUFA / colorectal_neoplasia
beta-carotene / cancer</td>
</tr>
<tr>
<td>21</td>
<td>13</td>
<td>changed incidence / risk</td>
<td>“C use was associated with [increased/decreased] risk of D”
“C reduce(s) the risk of D”
“C may reduce the incidence of D in…”
“C was associated with a [lower/higher] risk of D”
“relation of C to risk of D”</td>
<td>Warfarin / ICH
Bisphosphonates / osteoporotic_fractions
Eicosapentaenoic_acid / cardiovascular_disease
Preconception_O3 / GDM
cholesterol / coronary_heart_disease</td>
</tr>
<tr>
<td>24</td>
<td>22</td>
<td>inhibits, suppresses</td>
<td>“C inhibited [other event] in D”
“the D action of C”
“C suppresses D through [mechanism]”</td>
<td>Ki23057 / gastric_tumours
diltiazem / hypotensive
Evodiamine / hyperalgesia</td>
</tr>
</tbody>
</table>
| | | “influence of C on D development”
| | | “C significantly suppressed D”
| | | histamine / seizure
| | | AS1069562 / allodynia
| 26 | 48 | inhibited / blocked disease progression
| | | “the effects of C on the progression of D”
| | | “C may protect against D”
| | | “C blocked D in organ culture”
| | | “C antagonized [other drug-induced] D”
| | | “C attenuates D in mice”
| | | “C ameliorated D by [mechanism]”
| | | “C alleviates D in [disease model]”
| | | minocycline / encephalopathy
| | | Eicosapentaenoic_acid / atherosclerotic_disease
| | | phenethyl caffeiate / hyperplasia
| | | procyclidine / seizures
| | | Simvastatin / pulmonary_fibrosis
| | | EGB / endothelial_dysfunction
| | | Propentofylline / hypersensitivity
| 28 | 17 | preventive effects evaluated
| | | “examine the effects of C on D”
| | | “study was carried out to evaluate the effect of C on D”
| | | “investigated possible beneficial effects of C on D”
| | | “to assess the effect of C on D”
| | | “C effective for the prevention of D”
| | | metformin / cytotoxicity
| | | atorvastatin / inflammation
| | | AdCbl / atopic_dermatitis
| | | nebivolol / endothelial_dysfunction
| | | dronedarone / atrial_fibrillation
| 30 | 23 | reduced, abolished, prevented
| | | “C prevents D”
| | | “C, a [description], prevented D”
| | | “C is beneficial in D”
| | | “D was reduced by C”
| | | “C was effective in reducing D”
| | | Itraconazole / fungal_infections
| | | AMD3100 / anxiety_behaviors
| | | lithium / tauopathies
| | | gabapentin / Pain
| | | buspirone / overall_anxiety_symptoms

A.3 Gene-disease relationships

Here we describe the major clusters in Figure 4 of the main paper (reproduced below). We use "G" to represent a gene, and "D" to represent a disease.

Clusters 2h, 4, 6, 8, and 9 contain relationships that are quite similar to cluster 20 in Figure 3. All of these clusters describe situations where a protein (or chemical, in Figure 2 cluster 20) is implicated in the pathogenesis of a disease. Clusters 4 and 6 refer simply to increased levels of G in D, whereas clusters 8 and 9 more directly implicate the protein in D pathogenesis. Cluster 29 reflects a slightly different theme in which the protein promotes disease progression, rather than disease onset. The two themes share some overlap but are subtly different; cluster 29 focuses on cancers, discussing proteins promoting cell invasion, proliferation, and progression.

Clusters 2j and 3 include therapeutic relationships, where G is described as a treatment or potential treatment of D. Cluster 3 mostly describes trials of G in the treatment of D. While there are a few statements that could perhaps imply efficacy, such as “G therapy for patients with D”, the treatment relationships here are not described with anywhere near the definiteness of clusters 8 and 9 in Figure 3.

Clusters 5 and 7 are similar to clusters 18 and 19 in Figure 3 in that they do not ascribe a pathogenic role to the protein (or chemical) but instead refer to it as a biomarker. Cluster 7 contains statements where a protein, G, is described as “a robust diagnostic biomarker for D”, or “an indicator of D”, without insinuating that it causes D. Cluster 5 is very closely tied to cluster 6, but cluster 6 contains a few statements with causal implications, such as “G is a mediator of D”.

In clusters 10 and 12, the protein, G, is described as a drug target or potential target for the treatment of the disease,
D. Often this description does not include the word “target”, but it is implied - the statement refers to the utility of G inhibitors in treating D, for example.

Some statements in clusters 10 and 12 refer to mutations in G that have an effect on D. It’s implied that disruptions in the activity of G can impact the course of D. Clusters 13 and 14 address the issue of mutations more directly, either by describing studies that investigate the role of G mutations in the progression of D (cluster 13) or by directly implicating mutations in G as causal risk factors in D (cluster 14).

While clusters 5 and 7 refer specifically to biomarkers, clusters 15, 17 and 30 refer to overexpression of proteins in disease, usually in patient serum. These proteins could represent potential biomarkers as well, although they are not described in that way.

Clusters 18, 19 and 21 focus on regulation, specifically cases where improper regulation of a gene is linked to disease. There is substantial overlap between these ideas and those of overexpression, biomarkers, etc. but again the focus is subtly different.

The last set of clusters, 22, 26 and 27, focus explicitly on polymorphisms that increase disease risk. The terms “polymorphism”, “mutation”, and “variant” are all present. Cluster 22 focuses almost exclusively on tumor suppressor genes, which, when mutated, can cause cancers. Note that in this case it is mutations in the gene (the DNA) that are increasing risk, rather than the level or activity of a protein. There is some semantic overlap with clusters 13 and 14.
Table A3: Cluster descriptions for gene (G) – disease (D) interactions, following the cluster numbers illustrated in Figure 4 in the main text.

<table>
<thead>
<tr>
<th>Cluster Number</th>
<th>Cluster Size</th>
<th>Theme</th>
<th>Selected Descriptive Patterns</th>
<th>Entity Pair with Pattern (G / D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2h</td>
<td>44</td>
<td>therapeutic effects, esp. drug sensitivity, resistance</td>
<td>“G and response to [drug] in patients with D”
“G resistance in patients with D”
“serum G levels are associated with D”
“G sensitivity in D”
“comparison of G and [other drug] for detection of D”</td>
<td>TCF7L2 / type_2_diabetes
insulin / systemic_lupus_erythematosus
leptin / hepatic_steatosis
insulin / hypertension
cardiac_troponin_1 / ischemic_myocardial_injury</td>
</tr>
<tr>
<td>2j</td>
<td>33</td>
<td>influences disease treatment (some adjuvant therapies)</td>
<td>“the use of G in the treatment of D”
“D in patients treated with G”
“effect of G on [event] in D patients”
“G therapy in patients with D”
“efficacy of G in D”</td>
<td>parathyroid_hormone / osteoporosis
interferon_alpha_2b / Acute_renal_failure
prolactin / systemic_lupus_erythematosus
Erythropoietin / chronic_renal_failure
S-1 / colorectal_cancer</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>protein causes change in disease status</td>
<td>“injected G induces D”
“G promotes D”
“regulation of [event] by G in D”
“G inhibits D”
“G exacerbates D”</td>
<td>IL-1 / anorexia
VEGF-D / metastasis
TDP-43 / frontotemporal_lobar_degeneration
High-mobility_group_box_1 / ulcer_healing
VDUP1 / bacteremic_shock</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>levels / expression in disease</td>
<td>“G levels in D patients”
“expression of G in D”
“increased G levels in patients with D”
[“regulation/function] of G system in D”
“G level in D”</td>
<td>Interleukin-6 / headache
SFRP4 / primary_serous_ovarian_tumours
thyroglubulin / nontoxic_goiter
interleukin-6 / stroke
C-reactive_protein / atopic_dermatitis</td>
</tr>
<tr>
<td>6</td>
<td>28</td>
<td>levels / expression in disease</td>
<td>“G levels in patients with D”
“G levels in D patients”
“effects of [drug] on G in D patients”
“serum G levels in D”
“expression of G in D”</td>
<td>interleukin-6 / glomerulonephritis
Interleukin-2 / multiple_sclerosis
insulin / hypertensive
E-selectin / Kawasaki_disease
E-cadherin / carcinomas</td>
</tr>
<tr>
<td>7</td>
<td>26</td>
<td>biomarkers, diagnostic</td>
<td>“G is a robust diagnostic biomarker for D”
“G is an independent predictor of D”</td>
<td>TLE1 / synovial_sarcomas
Proinsulin / coronary_heart_disease</td>
</tr>
<tr>
<td>Page</td>
<td>Number</td>
<td>Section</td>
<td>Relevant Text</td>
<td>Relevant Genes/Proteins</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>---------</td>
<td>---------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>8</td>
<td>11</td>
<td>role in pathogenesis</td>
<td>association of G with [event] in patients with D"</td>
<td>Plasma_hyaluronidase / atherosclerosis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"effects of G on D"</td>
<td>TGFbeta-1 / breast_cancer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"role of G in the development of D"</td>
<td>chromogranin-A / neuroendocrine_tumors</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"role of G in the pathogenesis of D"</td>
<td>SERPINA3 / preeclampsia</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"a novel gene, G, is associated with D"</td>
<td>FCGR2A / rheumatoid_arthritis</td>
</tr>
<tr>
<td>9</td>
<td>24</td>
<td>role in disease course / pathogenesis</td>
<td>clinical impact of circulating G in D"</td>
<td>miR-18a / oesophageal_squamous_cell_carcinoma</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"G attenuates D"</td>
<td>Wnt5a / pulmonary_arteriolar remodeling</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"G predicts [event] in patients with D"</td>
<td>LTBP2 / acute_dyspnoea</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"evidence for role of G in D"</td>
<td>BRCA1 / gastric_cancer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"G: the link between D and [other disease]"</td>
<td>HMGB1 / diabetes_mellitus</td>
</tr>
<tr>
<td>10</td>
<td>32</td>
<td>inhibitors used as therapies</td>
<td>"G inhibitors in D: …"</td>
<td>ACE / aortic_stenosis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"D with G mutation(s)"</td>
<td>TARDBP / amyotrophic_lateral_sclerosis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"response to G inhibitors in patients with D"</td>
<td>EGFR / squamous_cell_carcinoma</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"G testing and management of D"</td>
<td>EGFR / NSCLC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"G gene amplification in D"</td>
<td>c-erbB-2 / nasopharyngeal_carcinoma</td>
</tr>
<tr>
<td>12</td>
<td>17</td>
<td>drug targets (esp. cancer)</td>
<td>"G signaling in D cells"</td>
<td>Akt / colon_cancer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"G inhibitors in the treatment of D"</td>
<td>MEK1/2 / malignancies</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"G as a strategic target in D therapy"</td>
<td>ErbB1 / breast_cancer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"G: an attractive target for D therapy"</td>
<td>Angiopoietin-2 / tumor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"[drug]: a C inhibitor for the treatment of D"</td>
<td>tumor_necrosis_factor_alpha / rheumatoid_arthritis</td>
</tr>
<tr>
<td>13</td>
<td>26</td>
<td>evaluation of role of mutations in disease</td>
<td>"G mutations in D"</td>
<td>KRAS / lung_adenocarcinoma</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"mutations in G in D"</td>
<td>GUSB / mucopolysaccharidosis_VII</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"characterization of G expression in D"</td>
<td>MUC1 / papillary_thyroid_carcinoma</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"G mutations are associated with [event] in D"</td>
<td>KRAS / colorectal_cancer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"role of G in D development"</td>
<td>RSK2 / osteosarcoma</td>
</tr>
<tr>
<td>14</td>
<td>91</td>
<td>causal mutations</td>
<td>"mutation of G in a patient with D"</td>
<td>STK11 / Peutz-Jeghers_syndrome</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"G mutation is associated with D"</td>
<td>MTHFR / arterial_stroke</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"novel mutation in G gene associated with D"</td>
<td>MYH7 / distal_myopathy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"characterization of G mutations causing D"</td>
<td>GALC / Krabbe_disease</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"mutations of the G gene in patients with D"</td>
<td>COL1A2 / osteogenesis_imperfecta</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"D: a novel G mutation…”</td>
<td>CISD2 / Wolfram_syndrome</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"D: novel G mutations and…”</td>
<td>NPC1 / Niemann-Pick_type_C_disease</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"the recurrent mutation of G in C patients"</td>
<td>BRCA1 / breast_cancer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"G mutations can cause D"</td>
<td>HIBCH / Leigh-like_disease</td>
</tr>
</tbody>
</table>
| 15 | 13 | levels, concentrations, expression | “G levels in patients with D”
“serum G concentrations in D”
“G expression in D cell lines”
“diagnostic value of G in D patients”
“prognostic relevance of G in D” | renin / thoracic_neuroblastoma
leptin / hyperinsulinemia
TIMP-1 / prostate_tumor
interleukin_17 / lung_cancer
CCN3 / Ewing_sarcoma |
| 17 | 12 | levels, overexpression | “serum G concentrations in patients with D”
“serum G level in patients with D”
“G overexpression in D”
“G is overexpressed in D”
“G expression in D patients” | erythropoietin / anemia
thyroglobulin / subacute_thyroiditis
cyclin_D3 / follicular_thyroid_carcinoma
FOXG1 / hepatoblastoma
SPARC / pancreatic_cancer |
| 18 | 43 | expression, mutations correlated with disease | “presence of G gene mutation in D patients”
“frequency of G mutations in D”
“association of D with G mutations”
“association of G expression with D”
“correlation between G expression and [event] in D” | BRAF / melanoma
PTEN / thyroid_cancer
PDH / cerebral_dysgenesis
FcRn / lung_abnormalities
COX-2 / colon_cancer |
| 19 | 32 | gene expression, regulation | “down-regulation of G in D cells”
“expression of G mRNA in D”
“mRNA expression of G in patients with D”
“D cells expressing G”
“regulation of G expression in D cells” | E-cadherin / breast_cancer
CerbB-2 / nasopharyngeal_carcinomas
KCNO1 / long_QT Syndrome_type_1_and_2
P-gp / acute_myeloid_leukemia
CYP1A1 / medulloblastoma |
| 21 | 66 | gene expression in cell lines | “G expression in D”
“G expression in patients with D”
“analysis of G expression in D”
“effects of G on D cells”
“G expression in D cells” | c-mpl / hematologic_disorders
trypsinogen-1 / ulcerative_colitis
SLC34A2 / ovarian_tumors
p53 / hepatocellular_carcinoma
MMP2 / prostate_cancer |
| 22 | 28 | tumor suppressor genes | “G as a D suppressor”
“G acts as a D suppressor”
“the gene G is a functional D suppressor”
“G, a novel D suppressor”
“G: a mediator of D” | Caspase-2 / tumour
ECRG4 / tumor
GADD45G / tumor
SynCAM / tumor
P-glycoprotein / melanoma_invasion |
| 26 | 26 | polymorphism | “association of variants of G with D”
“association of the G polymorphisms with D”
“genetic polymorphisms at G are associated with D”
“mutations in the G gene in patients with D”
“G polymorphisms are associated with D” | factor_V_Leiden / thrombosis
interleukin-18 / type_1_diabetes
SIRT1 / carotid_atherosclerosis
P-protein / encephalopathy
Chromogranin_A / hypertensive_renal_disease |
| 27 | 28 | polymorphism | “association of G gene polymorphism with D”
“polymorphism of G in D”
“mutation of the G gene in D” | vascular_endothelial_growth_factor / colon_cancer
angiotensin-converting_enzyme / sarcoidosis
endothelin-3 / Waardenburg-Hirschsprung_disease |
A.4 Gene-gene relationships

Here we describe the major clusters in Figure 5 of the main paper (reproduced below). We use "G1" to represent the first gene, and "G2" to represent the second gene.

The cluster themes in Figure 5 were the most difficult to parse among all the dendrograms. The vast majority of protein-protein relationships reflect some kind of change in activity or expression in the second protein based on the action of the first protein. Many of the relationships are similar to chemical-gene relationships in that a protein binds to another protein (cluster 10), increases its expression (clusters 21 and 22), or affects its expression in some other way that is not stated (clusters 7 and 17). All of these themes also appear in Figure 2.

However, there are a few other themes that are specific to protein-protein interactions. One protein can enhance the response of another to some stimulus (cluster 13), or activate or stimulate another protein by itself (clusters 14 and 16). A protein can be produced by a cell population expressing another protein, as in the case of lymphocytes (i.e. proteins produced by CD4-bearing T-cells), which is reflected in clusters 1, 2 and 6.

Clusters 24, 25, 28 and 30 all reflect similar relationships involving regulation and pathways, but are subtly different. Cluster 24 explicitly refers to signaling, with both protein members forming part of the same signaling pathway. Cluster 25 is a cluster of patterns reflecting abbreviations, where the two proteins involved are literally identical or part of the same protein complex. Clusters 28 and 30 speak more specifically of regulation, but contain several patterns that also refer to co-membership in the same pathway. All of these concepts are related.
Table A4: Cluster descriptions for gene (G1) – gene (G2) (usually protein-protein) interactions, following the cluster numbers illustrated in Figure 5 in the main text.

<table>
<thead>
<tr>
<th>Cluster Number</th>
<th>Cluster Size</th>
<th>Theme</th>
<th>Selected Descriptive Patterns</th>
<th>Entity Pair with Pattern (G1 / G2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>90</td>
<td>cell populations</td>
<td>“G1 induction of human G2”</td>
<td>C5a / interleukin_1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“increased induction of G2 in G1 lymphocytes”</td>
<td>CD8 / interferon-gamma</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“G1 + G2 T-cell population”</td>
<td>CD25 / Foxp3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“G2 induction of G1”</td>
<td>NfkappaB / Interleukin-1beta</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“G1 expression [on, in] G2 T-cells”</td>
<td>CD161 / CD8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“an enriched G1 + G2 T-cell subset”</td>
<td>CD4 / CD8beta</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“G1-dependent G2 activation”</td>
<td>ERK / CREB</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>cell populations, regulation</td>
<td>“regulation of G2 expression by G1”</td>
<td>SOX10 / MITF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“G1 induces G2 gene transcription”</td>
<td>TNF-alpha / MUC1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“regulation of G2 by G1”</td>
<td>RECK / matrix_metalloproteinase-9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“G2 expression in the G1 + cells”</td>
<td>CD34 / Bcl-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“G1 / G2 ratio”</td>
<td>CD39 / CD8</td>
</tr>
<tr>
<td>6</td>
<td>39</td>
<td>cell populations, protein production / gene expression</td>
<td>“G1 production by G2 + T cells”</td>
<td>IL-17A / CD146</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“G1 producing G2 + T cells”</td>
<td>IL-10 / CD8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“G1 signaling in G2 + T cells”</td>
<td>IFN-gamma / CD4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“G1 expression on G2 + T cells”</td>
<td>CXCR3 / CD8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“the role of G1 in the function of G2 + T cells”</td>
<td>CD28 / CD25</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td>inhibits / induces expression</td>
<td>“G1 induces G2 expression”</td>
<td>Fos / Neurotensin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“G1 inhibits G2 expression”</td>
<td>IL-15 / IL-7Ra</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“effect of G2 on G1 production”</td>
<td>MMP-9 / calcitonin-gene-related_peptide</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“G1 secretion in G2 cells”</td>
<td>cholecystokinin / STC-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“G1 induced G2 production”</td>
<td>TNF-alpha / TARC</td>
</tr>
<tr>
<td>10</td>
<td>76</td>
<td>binding, regulation of activity</td>
<td>“G1 binds G2”</td>
<td>HJURP / CENP-A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“G2 interaction with G1”</td>
<td>Bcl-xL / Clusterin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“G1 is a receptor for G2”</td>
<td>CD96 / CD155</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“G1 binding to G2”</td>
<td>Haptoglobin / apolipoprotein_A-I</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“G1 mediates activation of G2”</td>
<td>Bcl10 / NF-kappaB</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>enhances response (esp. hormones)</td>
<td>“G1 enhances [event] via G2”</td>
<td>Glypican-4 / insulin_receptor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“changes in the G1 response to G2”</td>
<td>prolactin / thyrotropin-releasing_hormone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“G1 and G2 responses to [event]”</td>
<td>Prolactin / TRH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“G1 in G2 receptor signaling”</td>
<td>Fc_gama_RI / p72syk</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“exaggerated G2 response of G1”</td>
<td>thyrotropin-releasing_hormone / prolactin</td>
</tr>
</tbody>
</table>
| 14 | 67 | activation, stimulation, signaling | “G2 activates [protein] via G1”
“G1 stimulates G2”
“G1 modulates G2 signaling”
“G2 stimulates G1 expression”
“G1 induces phosphorylation of G2” | fucosyltransferase_1 / Calreticulin
Akt / SREBP1c
Hsp27 / p53
EGFR / MUC1
Thrombopoietin / STAT5 |
| --- | --- | --- | --- | --- |
| 16 | 23 | activation, targeting | “function of G2 in G1 receptor activation”
“G2 promotes [event] by targeting G1”
“G1 phosphorylation by G2”
“role of G1 in the activation of G2”
“regulation of G1 expression by G2” | TNFR1 / Ubc13
EPB41L3 / miRNA-223
NuMA / CDK1
PP4 / JNK-1
FGF8 / androgen_receptor |
| 17 | 13 | affects production (mostly induces) | “G2 induces the production of G1”
“[protein] stimulates G2 production via G1”
“regulation of G2 production by G1”
“downregulation of G2 by G1”
“enhancement of G2 by G1” | IgG1 / IL-27
ERK1/2 / granulocyte_colony-stimulating_factor
IFN_gamma / IL-18
mir-25 / mitochondrial_calcium_uniporter
TNF-alpha / IFN-gamma |
| 21 | 28 | induces expression / production | “G2 induces G1 production”
“G1 modulates G2 expression”
“induction of G1 expression by G2”
“G2 upregulates G1 expression”
“G1 stimulates G2 secretion in [cell type] cells” | beta-defensin-2 / Tat
Stat3 / heat_shock_27kDa_protein
iNOS / IL-1beta
p16INK4a / p33ING1b
Angiotensin_II / endothelin-1 |
| 22 | 56 | induces release / production | “G1 induces G2 expression”
“G2 stimulates G1 secretion”
“G1 stimulates G2 release”
“G2 stimulates G1 production”
“effect of G2 on G1 secretion” | CXCL12 / connective_tissue_growth_factor
atrial_natriuretic_peptide / Thrombin
Bradykinin / tissue_plasminogen_activator
MCP-1 / Angiotensin_II
renin / neuropeptide_Y |
| 24 | 62 | signaling, receptor binding | “G2 signaling via G1”
“G1 / G2 costimulatory interactions”
“coactivator G1 in G2 transcriptional activation”
“G2 G1 signaling”
“the G2 G1 receptor”
“binding of G2 to the G1 receptor” | SMO-1 / TGF-beta
ICAM-1 / LFA-1
CBP / p53
TCF / beta-catenin
TNF / p55
interleukin-1 / interleukin-18 |
| 25 | 26 | same or related protein: abbreviations | “G1 (G2) inhibitor”
“expression of G1 (G2) protein”
“G2 (G1) activity”
“G2 (G1) expression”
“G1 / G2 complexes” | mammalian_target_of_rapamycin / mTOR
pentraxin_3 / PTX3
PON1 / paraoxonase-1
AURKA / Aurora_kinase_A
PAI-1 / vitronectin |
| 28 | 26 | regulation of expression / production | “the roles of G1 / G2 in [event]”
“G2 (G1) expression” | MMP-2 / TIMP-2
M-CSF / macrophage_colony-stimulating_factor |
| | | activity | “binding of G1 / G2 proteins”
| | | | “G2 regulates G1 activity”
| | | | “synergistic effect of G1 / G2”
| | | | NF-kappa_B / Rel
| | | | RhoA / Shp-2
| | | | IL-6 / BSF-2
| 30 | 28 | regulation of expression / activity | “upregulation of G2 activity by G1”
| | | | “regulation of G1 expression by G2”
| | | | “G1 regulation of G2”
| | | | “G2 regulation by the G1 pathway”
| | | | “prognostic significance of G1, G2, …”
| | | | CD28 / interleukin-4
| | | | TNF-alpha / TGF-beta
| | | | miR-133b / Connective_Tissue_Growth_Factor
| | | | JNK / ATF2
| | | | bcl-2 / PCNA |